Course Catalogue

Course Code: EEE 461
Course Name:
Power System II
Credit Hours:
3.00
Detailed Syllabus:

Transmission line cables: overhead and underground. Stability. Swing equation, power angle equation, equal area criterion, multi-machine system, step-by-step solution of swing equation. Factors affecting voltage and frequency stability. Economic operation within and among plants, transmission-loss equation, dispatch with losses. Flexible AC transmission system (FACTS). Relative power compensation, compensation techniques. High voltage DC transmission system. Power quality – voltage sag and swell, surges, harmonics, flicker, grounding problems; IEEE/IEC standards, mitigation techniques.

Course Code: EEE 463
Course Name:
Electrical Machines III
Credit Hours:
3.00
Detailed Syllabus:

Special machine: Series universal motor, permanent magnet DC motor, unipolar and bipolar brush less DC motors, stepper motor and control circuits. Reluctance and hysteresis motors with drive circuits, switched reluctance motor, electrostatic motor, repulsion motor, synchronous and control transformers. Permanent magnet synchronous motors. Acyclic machines: Generators, conduction pump and induction pump. Magnet hydrodynamic generators. Thermoelectric generators, flywheels. Vector control, linear motors and traction. Induction generator, AC-DC-AC conversion.

Course Code: EEE 465
Course Name:
Power Plant Engineering
Credit Hours:
3.00
Detailed Syllabus:

Power plants: general layout and principles, steam turbine, gas turbine, combined cycle gas turbine, hydro and nuclear. Power plant instrumentation. Selection of location: technical, economic and environmental factors. Load forecasting. Load curve: demand factor, diversity factor, load duration curve, energy load curve, load factor, capacity factor, and utilization factor. Generation scheduling: deterministic and probabilistic. Electricity tariff: formulation and types.

Course Code: EEE 467
Course Name:
Power System Protection
Credit Hours:
3.00
Detailed Syllabus:

Purpose of power system protection. Criteria of detecting faults: overcurrent, differential current, difference of phase angles, over and under voltages, power direction, symmetrical component of current and voltages, impedance, frequency and temperature. Instrument transformers: CT and PT. Electromechanical, electronic and digital relays: basic modules, overcurrent, differential, distance and directional. Trip circuits. Unit protection schemes: generator, transformer, motor, bus bar, transmission and distribution lines. Miniature circuits breakers and fuses. Circuit breakers: principle of arc extinction, selection criteria and ratings of circuit breakers, types, oil, SF6 and vacuum.

Course Code: EEE 468
Course Name:
Power System Protection Laboratory
Credit Hours:
1.00
Detailed Syllabus:

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 467. In the second part, students will design simple systems using the principles learned in EEE 467.

Course Code: EEE 469
Course Name:
Power System Reliability
Credit Hours:
3.00
Detailed Syllabus:

Review of probability concepts. Probability distribution: Binomial, Poisson and Normal. Reliability concepts: Failure rate, outage, mean time to failure, series and parallel systems and redundancy. Markov process. Probabilistic generation and load models. Reliability indices: Loss of load probability and loss of energy probability. Frequency and duration. Reliability evaluation techniques of single area system. Interconnected system: tie line and evaluation of reliability indices.

Course Code: EEE 471
Course Name:
Power System Operation and Control
Credit Hours:
3.00
Detailed Syllabus:

Overview: Integrated and deregulated power system. Real-time operation: SCADA. Energy management system, various data acquisition devices, wide area monitoring, protection and control. Application functions: state estimation; short term load forecasting; unit commitment, economic dispatch, optimal power flow. Frequency control: Generation and turbine governors, droop, frequency sensitivity of loads, area control error, automatic generation control and coordination, frequency collapse and emergency load shed. Power system security: Static and dynamic security constraints. Electricity market operation, bidding, spot market, social welfare, market clearing price, locational marginal price, bilateral contracts and forward market, hedging. Demand side control: Distribution and demand side management system, smart grid concept.

Course Code: EEE 473
Course Name:
High Voltage Engineering
Credit Hours:
3.00
Detailed Syllabus:

High voltage DC: Rectifier circuits, voltage multipliers, Van-de-Graaf and electrostatic generators. High voltage AC: Cascaded transformers and Tesla coils. Impulse voltage: Shapes, mathematical analysis, codes and standards, single and multi-stage impulse generators, tripping and control of impulse generators. Breakdown in gas, liquid and solid dielectric materials. Corona. High voltage measurements and testing. Overvoltage phenomenon and insulation coordination. Lightning and switching surges, basic insulation level, surge diverters, surge diverters and arresters.

Course Code: EEE 474
Course Name:
High Voltage Engineering Laboratory
Credit Hours:
1.00
Detailed Syllabus:

The students will perform experiments to verify practically the theories and concepts learned in EEE 473.

Course Code: EEE 475
Course Name:
Control System II
Credit Hours:
3.00
Detailed Syllabus:

Compensating using pole placement technique. State equations of digital
systems with sample and hold, state equation of digital systems, digital simulation and approximation. Solution of discrete state equations: Z-transform, state equation and transfer function, state diagrams, state plane analysis. Stability of digital control systems. Digital simulation and digital redesign. Time domain analysis. Frequency domain analysis. Controllability and observability. Optimal linear digital regular design. Digital state observer. Microprocessor control. H control, nonlinear control.

Pages